28k^2+12k+1=0

Simple and best practice solution for 28k^2+12k+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28k^2+12k+1=0 equation:


Simplifying
28k2 + 12k + 1 = 0

Reorder the terms:
1 + 12k + 28k2 = 0

Solving
1 + 12k + 28k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
28 the coefficient of the squared term: 

Divide each side by '28'.
0.03571428571 + 0.4285714286k + k2 = 0

Move the constant term to the right:

Add '-0.03571428571' to each side of the equation.
0.03571428571 + 0.4285714286k + -0.03571428571 + k2 = 0 + -0.03571428571

Reorder the terms:
0.03571428571 + -0.03571428571 + 0.4285714286k + k2 = 0 + -0.03571428571

Combine like terms: 0.03571428571 + -0.03571428571 = 0.00000000000
0.00000000000 + 0.4285714286k + k2 = 0 + -0.03571428571
0.4285714286k + k2 = 0 + -0.03571428571

Combine like terms: 0 + -0.03571428571 = -0.03571428571
0.4285714286k + k2 = -0.03571428571

The k term is 0.4285714286k.  Take half its coefficient (0.2142857143).
Square it (0.04591836735) and add it to both sides.

Add '0.04591836735' to each side of the equation.
0.4285714286k + 0.04591836735 + k2 = -0.03571428571 + 0.04591836735

Reorder the terms:
0.04591836735 + 0.4285714286k + k2 = -0.03571428571 + 0.04591836735

Combine like terms: -0.03571428571 + 0.04591836735 = 0.01020408164
0.04591836735 + 0.4285714286k + k2 = 0.01020408164

Factor a perfect square on the left side:
(k + 0.2142857143)(k + 0.2142857143) = 0.01020408164

Calculate the square root of the right side: 0.101015254

Break this problem into two subproblems by setting 
(k + 0.2142857143) equal to 0.101015254 and -0.101015254.

Subproblem 1

k + 0.2142857143 = 0.101015254 Simplifying k + 0.2142857143 = 0.101015254 Reorder the terms: 0.2142857143 + k = 0.101015254 Solving 0.2142857143 + k = 0.101015254 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + k = 0.101015254 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + k = 0.101015254 + -0.2142857143 k = 0.101015254 + -0.2142857143 Combine like terms: 0.101015254 + -0.2142857143 = -0.1132704603 k = -0.1132704603 Simplifying k = -0.1132704603

Subproblem 2

k + 0.2142857143 = -0.101015254 Simplifying k + 0.2142857143 = -0.101015254 Reorder the terms: 0.2142857143 + k = -0.101015254 Solving 0.2142857143 + k = -0.101015254 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + k = -0.101015254 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + k = -0.101015254 + -0.2142857143 k = -0.101015254 + -0.2142857143 Combine like terms: -0.101015254 + -0.2142857143 = -0.3153009683 k = -0.3153009683 Simplifying k = -0.3153009683

Solution

The solution to the problem is based on the solutions from the subproblems. k = {-0.1132704603, -0.3153009683}

See similar equations:

| 3iz-4=3z-5-i | | 3(a-1)=5-2a | | -475.09-4.319= | | 2x-18=x+20 | | -431.9+(-43.19)= | | 30/2+10= | | 4k-3=25 | | 6x-9=x+10 | | 8+3(x-4)=3x-4 | | 3(x+8)+x=180 | | (X+8)=5x | | B+0.87=1 | | 6x+17=8x-75 | | 4=x/14+1 | | 29t+13t-5u+2t-3u= | | 6.2=j+5.91 | | 3rb+21=15 | | 11b+6c-8b+3c= | | 2y^2-11y=6 | | 7p-4s+6s= | | -6b+11=-4(b+1)+3 | | 4g+6g+7g+8h-5h= | | 8y-5=3y | | 8-3(-3+7x)=-7+3x | | a+6b+8a+6b= | | 20t+7t-3r+5r-14t= | | 5(6x+6)-4=26+6x | | 5(6x+6)=26+6x | | 9v+8z-7z+3v= | | 6x+211=14x-5 | | 14x(4x+2)=40 | | 2x+3y+7x-2y= |

Equations solver categories